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Question 1

MiM1

M1A1

M1A1 (i)

Correct graph below

Let g(x) be the enlarged graph of f(z).

x
where 2’ = P

g(kx) = kf(z)
9(x') = kf (%)
(4)
f(x) :a(:p+%) +c—2—a
Let 2’ = g

h(z') = é(a(aﬂvl)2 + b(az') + ¢)
h(z') = (ax’)? + b’ + 2
h(z) = (ax)® + bz + 2



M1A1 (ii) Completing the square:

E1A1 The equation can be translated to generalise a parabola further:

g(z) = az?

E1  Hence any enlargement k maps onto a parabola with a different value for a = a’:

M1A1 kg (%) = ak (2)2
_
a
Lk
a

(7)

E1A1

n

M1A1 Applying an enlargement to h(x) = ax




Question 2

M1M1 P(t—mn)=a(t—n)®>+b{t—n)?+c(t—n)+d
P(t —n) = at® + (—3an + b)t* + (3an® — 2bn + c)t + d — nc — an® + bn?
b
1/ 2?
A1A1 ,,p_a(g_a_g_aJrC)
~ 3ac—b?
3

' _1 d—@—abg_Fb_S
9Ty 3a  27a3  9a2

_ 27a*d — 9abc + 2b°

27a3
(4)
M1 (i) 0= (u+v)’+plu+v)+gq
=13 4 3uv 4+ 3uv? + v + pu+pv+¢q
=u’ +v° + 3uv(u+v) + (u+v)p +q
M1 Generating a pair of equation by comparing coefficients
uP 0P = —q
3uv = —p
M1A1 Solving simultaneously:
3 _ 2)3 _
“ (3u 1
6 3 p’
R s—
U +uq 97
4p3
s, TeENE+ T
u =
2
- JP+ g g ¢,
“=\ 2 V2V Ty
| —q+ P+ % 2 B
y o _of ., ¢ P
\ 2 2 4 27
(4)

w



M1 (ii) A) Generating a geometric series:

Pttt r+1=2> 422+
x5 —1

I_lzx(f—i—a:—l—l)
B1 x#1
Al1A1
2% —1=uz(2®-1)
(*+1)(2° = 1) —2(2® - 1) =0
(2 =) (2* —2+1)=0
xlzegi
x2:€7§i
R Y FOR U S FO
VT2 VI T oy 2~ Vi~ a7
M1A1
|4 = |as] =1
I4$5I’3:1
Ty = X%

LTy = A/T3 + A/ 1 —I%Z

x5 = /x5 — /1 — 23

M1 (ii) B) Generating a geometric series:

P4t r+1=2+ 23 4 22

x®—1 20,2
= +x+1
1 ¥ (z” +x )
x;él

2% —1=2%2"-1)
(®+1)(2° = 1) —2*(z* = 1) =0
(2 —1)(2* -2 +1)=0

™
To =€ 3



M1

1 25 1
=2 +1=0—_-t+—, wheret=x—

3 27
Al1A1
2 3 2
o 2 (3—5)+(%)+3 (%)
3 2 4 27 2 4
ta] = |ts] =1
tatsts = 1
ty =t
1+1+ . 1\?
Ty =\/T3— 35 T35 —|\z3—5 )1
4 3 3 3 3 3
1+1 . 1\?.
Ty =A\/T3— 5T 5 — —|zz3—=] 1
5 3 3 3 3 3




Question 3

Mi1iM1 (i) Consider a has factors a1, as as... and b has factors by, by bs...
The factors of ab can be written as such:

X aq as as

b1 bl aq b1 a9 bl as
b2 b2a1 bQ (05} b2 as
bg b3a1 bg as b3a3

E1A2 Each cell must be unique as all a; is unique and no factor of b is common with a.
Hence the number of cells of the table is ab hence o¢(ab) = og(a)oy(b)

(5)
E1A2 (ii) p" only has the factor 1, and p" for n < k. Hence there are k + 1 factors.

(3)

M1M1 (iii) oo(n) = o0 (ﬁ(p?i)k)

=1

E1M1M1A2 Every term is coprime in the product hence we can apply the result in (i):
oo(n*) = [ [ oo(pi™)
i=1
i=1

M1 (iv) Correct prime factorisation 720 = 2" x 3% x5

M2 Correct factor Equation
00(720%) = (4k + 1)(3k + 1)(k + 1)

M2A1 Substitution
00(720%) = (4(3) +1)(2(3) +1)(3 + 1)

=13x7x4
= 364



Question 4

M1M1 Correct diagram below
0]
P M /// \\\
A - - D
\/ \\\/
B C
M1iM1
R R 1 2«
OBC=0CD =n—~--—
C=0 T 5" 10
B 21
5
A 47
DCB = —
5
4 ~
2 — 2 (%) — 2ADC
MAB=C
5
BND—or_ 20 _2T_ 7
5 5 5
B 3
5
MAB = AMB = 2%
E1l Hence AM B is isosceles therefore AM = z.
El OAB and AM B are similar triangles. Hence, let cos ¥ =y
M1

OAB: 2*=1"+1*-2(1)(1)y



M1 AMO = 3%
- T
MAO = —
5
El Hence AMO is isosceles and OM =z, and BM =1 —x
M1 AMO: (1—-2)?=2*+2"—2(z)(2)y

MiM1 Solving simultaneously:

2 =2-2
zt — 22 = —22%y
2 —2r+1=22%(1—y)
1 -2z — 2% = —22%
1—20 —2*=2"— 227
et — (2 =22+1)=0
2 —(r—1)>%*=0
(22 —x+1)(2*+2-1)=0

Al _—1+V5

v 2
13
- =

T

B1A1l Only valid solution for z > 0,2 € R is z = =15,

M1A1 Solving for y:

2y =2 — 22

:2_<ﬂ>2
2

145—2v5
4
2V5+4
===
V5 +1
y=7

-2




M1

M1A1

Correct diagram below

A C

A 47
AOG = —
)
cos(A0G) = — COS%

AG? =12 +12 — 2(1)(1) (— cos g)
AGJ2+2<1+4\/5>
VB
B 2




Question 5

M1M1A1 (i)

M1M1A1

/ sec(arctan(z))dz = / /1 + tan? (arctan(x))dz
= / V1+ 22dz
u = sinh(z)
/ V1 + 22dx = / cosh? (u)du
_ / cosh(2u) — 1du

2
_ sinh(2u) u
2 3 T¢
inh(2 arsinh inh
_ sin ( ar2$1n (z)) arsu; (x) Lo

M1M1M1A1 Attempt to evaluate gd(z):

M1M1M1A1

gd(z) :/ sech(t)dt
0
* h
_ / cos 2(t) it
o cosh”(?)
_ / cos.h(zf2 gt
o 1+ sinh*(¢)

(z)) =0
(z))

= arctan (sinh

= arctan (sinh

/sec(gd(a:))da: = /sec(arctan (sinh(x)))dx

= / \/ 1+ sinh?(z)dx

= /cosh(m)dm
= sinh(z) + C

M1A1 (ii) Correct substitution

gd(u) =z
dx = sech(u)du

10



M1M1A1A1 /sec(x) arsinh(tan(x))dx = [ usech(u)sec(gd(u)))du

usech(u) sec(arctan(sinh(u)))du

usech(u) \/1 + tan?(arctan(sinh(u)))du

/
/
/
_ / wsech(u)y/1 + sinh?(u)du
/
I
3

usech(u) cosh(u)du

11



Question 6

Mi1iM1M1

M1M1A1

Correct transformation

M
A C
BAMzé
; A_MC"
Wy T oA
M/
sinB:B]\i
a=MC"+ BM
MC' , A
— Atan =
sinB+C tan2
_C’Atan% bt A
~ sinB + anE
btan% A
== SinB —i—btana

= btan 1+ !
— a J—
2 sin B

12



MIM1IMI (i) reflect along the perpendicular bisector of AB

M1M1A1 MyAC=A-B
a =AM, + CM,
C'M, = btan(M,AC)
CM; = btan(A — B)

AMy= —
cos(MyAC)
b
AMy = ——————
>" cos(A— B)
b
I S A—
a cos(A—B) + btan( B)

13



M1M1M1

M1M1M1A1

B1

Reflect along the perpendicular bisector of AB

D D D

Let a = DM{M, 8= BM,M,
DMA=rm—a-§
DA = DM, sin(m — a — ) = DM sin(a + ()
DMy = DM, sin(«)
CM,D = j
CM;, = DM, cos(p)
= DM, sin(«) cos(f3)
MiMs = DM, sin(a)
BMy = M Mssin(f3)
= DM, cos(a) sin(f3)
DA = CM,+ M,B
DM, sin(a + B) = DM cos(a) sin(B) + DM; sin(«) cos(3)
sin(a + ) = cos(a) sin(B) + sin(a) cos(f)

Because it’s a reflection of a rectangle, A + B = 7. However, the same argument
could be made for any value of «, 8 by varying the height of the rectangle, and
changing the dimensions of the right angled triangle on the LHS. This further

extends to any «, # due to the periodicity of the sine and cosine function

14



Question 7

M1M1A1 This transformation is the same as a transformation mapping y = = tan(6) to the
x-axis, reflecting, and then rotating back again:

(e o) (0 —0) (0 20 - (00 0 (3 -)
_ ((3052( ) — sin®(9) 251n(9) cos( ) )
2sin(f) cos()  sin?(#) — cos?(6)
_ (cos(%) sm(( )))

sin(20) —cos(2

A2A2A2 (i) Considering these three cases:

Case 1: 0 = 27k Any curve works as it is the identity matrix
Case 2: 0 =27k + y = mx for all m.
Case 3: 8 € R y* + 2® = €? for all r.

M1M1A1 (ii) Using a general matrix:

a b\ (z\ (ax+ bz?
c d) \2*)  \cx+da?
(ax + ba?)? = cx + da?
b’xt + 2abz® + (a* — d)z® — cx =0

The equation must be independent of x:

15



M1M1A1 Using a general matrix

a b z\  [(ax+bx"
c d) \x2")  \cx+dz"

(ax + bz"™)" = cx + dz"

Comparing co-efficients b = ¢ = 0 as before:

a"z" +dz"a" =d

(i—r rql) For even n

(T (L) For odd n
0 r

M1A1 The general co-ordinate of a point of the curve can be written as a vector:

()-8 =)0

E1A1 This is a rotation of F radians of an y = 22 curve hence the invariant lines follows:

(O 2)- (g 22)

0

16



Question 8

M1A1 1] =k
yxj=kxj

—1=kj

M1A1 Jji=—k
kxji=kx—k

kjt X i = —1

—kj=—1

kj =1

Al1A1 Any evidence of having calculated below:

k=73
ki=—j
M2M2M2 i) Attempt to evaluate each term:
iql = tai — b + icji + idki
= ita — b — ikc — ijd
=—a—1ib—jc—kd
jqj = jaj + jbij — je+ jdkj
= —a+ jkb— jc — jid
=—a+1ib— jc+ kd
kqk = kak + kbik + kcjk — kd
= —a+ kjb— kic — kd
=—a+1ib+ jc—kd

M1A1 Summing them up and multiplying by —%
1 S 1 . .
—E(q +iqi + jqj + kqk) = —5(—2a + 2bi + 2cj + 2dk)

=a—b—0bj —ck
:q*

M1A1 (ii) Correct factorisation

a+bi+cj+dk=a+bi+ (cj+dij)
=a+bi+ (c+di)j

17



M1M1A1A1 q9q" = (z + wj)(z" — wj)
= 22" +w® — 2wj +wjz*
(qq*)* = 22" + (w*)? + 2*w*j — w*jz
a2+b2+c2+d2:qq*
= 22" + (w*)* + 2*w*j — w*jz
=a’+ b + (w)? + 2w — wjz

02 +d2 — (w*)Z +z*w*] —’U)*jZ

18



Question 9

M1M1M1A1 b du\ 2 2~ 1(b)
Yy _
/ 1+ <—) dx—/
a dx z=1(a) \
/grl(b) <dx)2
x=1(a) \ dr

M1M1 = = 1 — cos(0)
d
%:—m@

M2M2M2A1 Any evidence of having calculated below:

/07r \/sing(e) + (1 — cos(0))?df = /07r \/sin2(9) + cos(6)? + 1 — 2 cos(6)dd
_ / " /2= Zcos(@)d0
) / " /T = cos(B)db

=2 OW \/1 — <1 — 2sin® (g»de
o
—

=1

™

0

19



M2M2M2A1  Setting y to be the zero-point for gravitational potential energy.
1

S = mo(~y)
ds
V= % = 4 /—2gy
S|
t:/ ds
0o V—29Y
1 |
= — —ds
=29 Jo Yy
B 1 /’T 1 ds
—2g9 Jo /ydo

20



Question 10

M1A1A1 Any evidence of having calculated below:

E1M1M1A1 i) Horizontal component of velocity is the same. Let the angle of approach be « and
of deflection (. For a co-efficient of restitution e’:

NLR: o = using
vsin a
COE: 1mu2 = 1m'02
22
u=v
COM: usina = wvsin
e =1
soa=f3
M1M1A1 ii) Let (z,y) be a point on the ellipse during the collision. The direction vector of the
gradient:
2
2, ¥
dy 1
2 29— =0
v Yir1— &2
d
Yoo
de y

” (x(c2y— 1))

M1M1 The direction vector of the line connecting the two foci can be written as such:

() (%)

21



M1M1A1 Use of the dot product to find a:

(1) G ) (559

(z—¢)*+y°
B y(x(c? = 1)+ 2 —¢)
V2= 2cr+ E+ (1—22)(1 — 2)
Yyl —xr+x—c)
V22 —2cz + 1
_ yc(xe—1)

cosa =

zc—1
:yc

Y —c—z
) ()
V(=z =) +y?
_ —y(z(c® — 1) + (x +¢))
N Va2 +2cr+ 2+ (1—2?2)(1 - 2)
—y(z? —z+z+¢)
Va2 + 2cx + 1
_ —yc(ze+ 1)
rc+1
= —yc

M1A1 Use of the dot product to find 5:

(o)

cos 5 =

M1E1A1

cosa = — cos 3

()

Cosine is an even function, hence o = 3 hence this the path given by an elastic
collision.

(o)

cosa = —cos f3

22



Question 11

M1M1A1 / re *dx :/ xi[—e_z]dx
0 0 dx
= —xe * —/—e‘xdaz‘oo
= e_xdx‘oo
0
=1

M1A1 i) The probability that a relationship will be a success:

o
/ e fdr = —e"
1

1
E1A1 The number of relationships, N, is geometrically distributed by N ~ Geo (—), hence
e

o 1
1 e

the expected number of relationships is e

M1M1A1 The expected time given a relationship has failed:

1 1 d
/ xe Tdr = / r—[—e *ldz
0 o dz

M1A1 Multiplying it by E(N) yields e — 2. Including the additional successful year E(t) =
e—1.

E1A1 The expected number of relationships required will remain unchanged as the
probability for each trial is the same, hence it remains e.

M1M1A1 Finding the expected time for a new relationship to start:

(0.) o d
/ rie " dxr :/ r?—[—e "]dx
0 0 dx
= g% " —/—erxd:c‘oo
0

= g%+ 2 (—aze‘” — / —e_Idx) dx‘
0

=2

23



E2A1 There are N — 1 waiting periods for the next relationship hence the expected time
waiting is 2(e — 1). The overall waiting time is e — 2 + 2(e — 1) = 3e — 4. With the
additional year for the last relationship to be a year, the overall time is 3e — 3.

24



Question 12

M1M1M1M1 sin(z) _ (1 _ z) (1 n f) (1 _ ﬁ) (1 n i) (1 _ i) (1 . i)
x T s 2m 2m 3T 3T
(-G (-G)) (-G
s 2m 3T
, , sin(x)
The mclaurin expansion of :
x
sin(z) @ — é—? + iij
r x
2t
=1——=+—.
6 120
M2A1 Comparing co-efficients of the z2 term
1 1 1
2 4n? 92’ 6
14 1 N L 2
497 6

E1A1 i) The probability that a random integer is a multiple of 2 is % The chance that 2 is

}L. Hence the chance that neither is 1 — ;11

E1A1  The probability that a random integer is a multiple of p is %. The chance that 2 is

z%' Hence the chance that neither is 1 — %

E2M2 Let p, be the nth prime. The probability that they have no prime factors in common
is given by:

(-0 -2 0-2)--[() () ()]

M2 By a geometric series:

-1
V) ()] (e e ) (b ) (4
l— ) \l=%)\1-%/)" i P p; Py p3

25



E2A1 You can generate any number squared by multiplying it’s prime numbers in the ex-
pansion. The expansion is unique to each number hence:

Kl+1+1 )(1+1+1 )<1+1+1 )]_1—{1+1+1+1 B
pi o opt 3 Py pi o opy 22 32 427

26



